Contents

Reproducing Kernel Hilbert Space and Reproducing Kernel Banach Space

This article introduces Reproducing Kernel Hilbert Space and Reproducing Kernel Banach Space.

Reproducing Kernel Banach Space

Definition
 A reproducing kernel Banach space \( \mathcal{B} \) on a prescribed nonempty set \( X \) is a Banach space of certain functions on \( X \) such that every point evaluation functional \( \delta_x \), \( x \in X \) on \( \mathcal{B} \) is continuous, that is, there exists a positive constant \( C_x \) such that \[ \left| \delta_x(f) \right| = \left| f(x) \right| \leq C_x | f |_\mathcal{B} \text{ for all } f \in \mathcal{B}. \]

Note that in all Representer Kernel Banach Space \( \mathcal{B} \) on \( X \) norm-convergence implies pointwise convergence, that is, if \( (f_n) \subset \mathcal{B} \) is a sequence converging to some \( f \in \mathcal{B} \) in the sense of \( |f_n - f|_\mathcal{B} \rightarrow 0 \), then \( f_n(x) \rightarrow f(x) \) for all \( x \in X \).

Construction of Reproducing Kernel Banach Space

Construction

For a Banach space $W$, let $[\cdot,\cdot]$ be its duality pairing which is a bi-linear maps from $W\times W’ \rightarrow \mathbb{R}$. Suppose there exist an nonempty set \( X \) and a corresponding feature mappings $\Phi : X \rightarrow W’,$. We can construct a Reproducing Kernel Banach Space as \[B := \{ f_v(x) :=[\phi(x),v] : v \in W, x \in X \} \]

with norm \(|{f_v}|_B := \text{inf} \{|v|_W: v\in W\ \text{ with }\ f=[ \Phi(\cdot), v ]\}.\)

./feature.png


Examples of RKBS

Neural Networks

Bartolucci, Francesca, et al. “Understanding neural networks with reproducing kernel Banach spaces.” Applied and Computational Harmonic Analysis.

Bartolucci, Francesca, et al. “Neural reproducing kernel Banach spaces and representer theorems for deep networks.” arXiv:2403.08750 .

\(L_p\)-Type RKBS


Representer Theorem

Unser, Michael. “A unifying representer theorem for inverse problems and machine learning.” Foundations of Computational Mathematics 2021.


Reproducing Kernel Hilbert Space

If a reproducing kernel Hilbert space \(\mathcal{H}\) is a Hilbert space (we have inner product structure), we call it a reproducing kernel Hilbert space.

  • \(\left<f,K(x,\cdot)\right>=f(x)\), \(K(x,y)=\left<K(x,\cdot),K(y,\cdot)\right>\). This means \(K_x:=K(x,\cdot)\) is the feature map.
  • Covaraince operator \(\Sigma:=\mathbb{E}_x K_x\otimes K_x\) where \(x\otimes y=x y^\top\) is the operator \(\mathcal{H}\rightarrow\mathcal{H}\) defined as \(g\otimes h:f\rightarrow \left<f,h\right>g\).
Why we are interested in the Covariance Operator
We definte the following operators \(S:\mathcal{H}\rightarrow \mathcal{L}_2\) as \((Sg)(x)=\left<g,K_x\right>\).

./feature.png

Eigendecay and effective rank

Reproducing Kernel Sobolev Space

Characterization of Reproducing Kernel Banach Space using Metric Entropy